Structure and labelled enumeration of K3,3-subdivision-free projective-planar graphs

نویسندگان

  • Andrei Gagarin
  • Pierre Leroux
چکیده

We consider the class F of 2-connected non-planar K3,3-subdivision-free graphs that are embeddable in the projective plane. We show that these graphs admit a unique decomposition as a graph K5 (the core) where the edges are replaced by two-pole networks constructed from 2-connected planar graphs. A method to enumerate these graphs in the labelled case is described. Moreover, we enumerate the homeomorphically irreducible graphs in F and homeomorphically irreducible 2-connected planar graphs. Particular use is made of two-pole (directed) seriesparallel networks. We also show that the number m of edges of graphs in F satisfies the bound m ≤ 3n − 6, for n ≥ 6 vertices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The structure and labelled enumeration of K_{3,3}-subdivision-free projective-planar graphs

We consider the class F of 2-connected non-planar K3,3-subdivision-free graphs that are embeddable in the projective plane. We show that these graphs admit a unique decomposition as a graph K5 (the core) where the edges are replaced by two-pole networks constructed from 2-connected planar graphs. A method to enumerate these graphs in the labelled case is described. Moreover, we enumerate the ho...

متن کامل

The structure of K3, 3-subdivision-free toroidal graphs

We describe the structure of 2-connected non-planar toroidal graphs with no K3,3-subdivisions, using an appropriate substitution of planar networks into the edges of certain graphs called toroidal cores. The structural result is based on a refinement of the algorithmic results for graphs containing a fixed K5-subdivision in [A. Gagarin and W. Kocay, “Embedding graphs containing K5-subdivisions”...

متن کامل

Counting Labelled Projective-planar Graphs without a K 3,3 -subdivision *

We consider the class F of labelled 2-connected non-planar graphs without a K3,3-subdivision that are embeddable in the projective plane. A method of enumerating these graphs is described. We also enumerate the homeomorphically irreducible graphs in F and homeomorphically irreducible 2-connected planar graphs. The methods are based on the projective-planarity characterization for graphs without...

متن کامل

Structure and enumeration of two-connected graphs with prescribed three-connected components

We adapt the classical 3-decomposition of any 2-connected graph to the case of simple graphs (no loops or multiple edges). By analogy with the block-cutpoint tree of a connected graph, we deduce from this decomposition a bicolored tree tc(g) associated with any 2-connected graph g, whose white vertices are the 3-components of g (3-connected components or polygons) and black vertices are bonds a...

متن کامل

Embedding Graphs Containing K5-Subdivisions

Given a non-planar graph G with a subdivision of K5 as a subgraph, we can either transform the K5-subdivision into a K3,3-subdivision if it is possible, or else we obtain a partition of the vertices of G\K5 into equivalence classes. As a result, we can reduce a projective planarity or toroidality algorithm to a small constant number of simple planarity checks [6] or to a K3,3-subdivision in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005